A new generation of eCLIPs implant, the eCLIPs bifurcation flow diverter (eBFD), with higher metal coverage, was developed to achieve a similar flow diversion as a Pipeline Embolization Device (PED), a prototypical FD.
Particle image velocimetry was used to capture the fluid dynamics and velocity reduction within silicone aneurysm replicas. A circulatory mimicking loop was developed to circulate the flow through the silicone models. All generations of eCLIPs implants had some flow-diverting effect, with increasing metal coverage density of the implant proportionately increasing the flow diversion effect.
The eBFD, with a metal density of 35%, showed greater flow diversion than PED, with 30% metal density, for bifurcation anatomy. The eBFD showed similar reduction of flow in a bifurcation anatomy to PED in a sidewall, both sufficient to permit early thrombosis of the aneurysm. Thus, the eBFD can potentially provide sufficient flow diversion for the treatment of bifurcation aneurysms to avoid adjunctive coiling.